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Summary

The discovery that microsatellite repeat expansions can
cause clinical disease has fostered renewed interest in
testing for age-at-onset anticipation (AOA). A com-
monly used procedure is to sample affected parent-child
pairs (APCPs) from available data sets and to test for a
difference in mean age at onset between the parents and
the children. However, standard statistical methods fail
to take into account the right truncation of both the
parent and child age-at-onset distributions under this
design, with the result that type I error rates can be
inflated substantially. Previously, we had introduced a
new test, based on the correct, bivariate right-truncated,
age-at-onset distribution. We showed that this test has
the correct type I error rate for random APCPs, even for
quite small samples. However, in that paper, we did not
consider two key statistical complications that arise
when the test is applied to realistic data. First, affected
pairs usually are sampled from pedigrees preferentially
selected for the presence of multiple affected individuals.
In this paper, we show that this will tend to inflate the
type I error rate of the test. Second, we consider the
appropriate probability model under the alternative hy-
pothesis of true AOA due to an expanding microsatellite
mechanism, and we show that there is good reason to
believe that the power to detect AOA may be quite small,
even for substantial effect sizes. When the type I error
rate of the test is high relative to the power, interpre-
tation of test results becomes problematic. We conclude
that, in many applications, AOA tests based on APCPs
may not yield meaningful results.
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1. Introduction

The discovery of expanding trinucleotide-repeat (ETNR)
diseases has sparked renewed interest in statistical eval-
uation of age-at-onset anticipation (AOA), which is the
tendency for children to develop clinical disease at an
earlier age than their affected parents. Since ETNRs are,
at present, the only known genetic explanation for true
AOA, detection of AOA for a disorder of otherwise un-
known genetic etiology may shed light on the mode of
inheritance and may also influence strategies for genomic
linkage studies. Furthermore, investigators involved in
linkage studies will have large numbers of multiplex fam-
ilies on hand and readily available for secondary anal-
yses, and AOA testing based on these samples is virtually
cost free. These considerations have led to a recent pro-
liferation of reports of AOA in a variety of disorders,
including, among others, schizophrenia (Bassett and
Honer 1994), bipolar disorder (McInnis et al. 1993),
leukemia (Horwitz et al. 1996), Parkinson disease (Bon-
ifati et al. 1995), breast cancer, colon cancer, Alzheimer
disease, maturity-onset diabetes of the young, and in-
sulin-dependent diabetes mellitus (Paterson et al. 1996).
(For a recent review, see McInnis 1996.)

Heiman et al. (1996) pointed out a serious flaw in the
statistical approach of many of these reports (also see
Penrose 1948). A standard design is to test for a differ-
ence in mean age at onset between parents and children
in a sample of affected parent-child pairs (APCPs), using
a paired t-test or related nonparametric statistical pro-
cedure (e.g., see Myers et al. 1985; Zatz et al. 1995;
Paterson et al. 1996). Clearly, since both the parent and
the child in each pair are affected, whatever the current
age of each may be, the age at onset must be prior to
the current age. However, since the child is in general
younger than the parent at the time of assessment, this
right truncation of the age-at-onset distribution will be
more pronounced in the children than in the parents.
This produces, purely as an artifact of truncation, a ten-
dency for the mean observed age at onset in the children
to be lower than the mean in their parents. The result
is statistical bias away from the null hypothesis of no
AOA.
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Using simulations, Heiman et al. (1996) showed that
the propensity of the ordinary paired t-test to reject the
hypothesis of no AOA when in fact it is true—that is,
when in fact there is no AOA—can be extremely high,
depending on the generating model. For some of the
models they considered, false rejection rates could be
virtually 100%. This raises obvious difficulties for in-
terpretation of the positive AOA findings in the
literature.

In an earlier paper (Huang and Vieland 1997), we
proposed a new test for AOA, based on the correct,
bivariate right-truncated, age-at-onset distribution. We
showed that this new test has the correct (nominal) as-
ymptotic type I error rate for a random sample of
APCPs, in marked contrast with the paired t-test and
other related testing procedures. However, in that paper
we did not address two key statistical complications that
are relevant to real applications of the test. First, we did
not explicitly define what was meant by a random sam-
ple of APCPs. In the current paper, we show that, in
this context, random sampling of APCPs corresponds to
a form of single ascertainment (viz., generalized single
ascertainment; Hodge and Vieland 1996) and that any
other ascertainment scheme will affect the type I error
rate of the test. In particular, we show that, for the types
of data generally available for AOA testing—namely,
linkage samples—the type I error rate of the test will
tend to be inflated.

A second statistical consideration that, to our knowl-
edge, has not received any systematic attention is the
power of any statistical test to reject the null hypothesis
when in fact it is false—that is, when there really is AOA.
In this paper, we consider the nature of the sampling
frame when the underlying cause of true AOA is an
ETNR. We show that there is good reason to suspect
that the power of any correctly formulated test may be
extremely low, even for substantial effect sizes. We con-
clude that, under sampling conditions that are realistic,
both in terms of ascertainment and sample size, even the
best tests may be expected to have inflated type I error
rates and quite low power. Under these circumstances,
interpretation of test results becomes problematic (see
section 5).

The paper is organized as follows: following (1) this
Introduction, we (2) briefly review the formulation of a
correct test statistic for random APCPs; we then (3) de-
fine what is meant by a “random” sample, place this
definition in the context of the problem of ascertainment,
and show that when APCPs are obtained from linkage
samples, we should expect the type I error rate of our
AOA test to be inflated; next (4), we consider the sta-
tistical model appropriate under the alternative hypoth-
esis and show that the power of any AOA test may be
expected to be low when the underlying biological mech-
anism is an ETNR; and, finally (5), we briefly consider

the difficulties of interpreting statistically significant
findings in view of the conclusions drawn in sections 3
and 4. Computational details for the new AOA test are
given in Appendix A. Appendix B contains details of the
simulation procedures (see sections 3 and 4).

2. An Appropriate Statistical Test

In this section, we briefly review the derivation of a
new AOA test statistic following Huang and Vieland
(1997). Consider a random sample of APCPs (see section
3 for a definition of “random” in this context). Let C1

and C2 be the parent’s and the child’s current ages (at
interview), respectively; let X1 and X2 be the parent’s
and child’s respective ages at onset. We assume that the
pairs (C1, C2) and (X1, X2) are independent of each other
in the population. Note that this assumption precludes
an effect of the disease on fertility, which may be un-
realistic for many genetic disorders. We assume that age
at onset follows a bivariate normal distribution in
APCPs. This assumption provides the theoretical frame-
work for development of the test statistic, and it is likely
to be quite innocuous in practice: the test statistic is
going to be a function of a sum of random variables, so
that, at least in large samples, the underlying distribution
of (X1, X2) is immaterial.

Let be the parameters of the agev � (m , m , j , j , r)1 2 1 2

at onset distribution, so that the marginal mean age at
onset for the parents is m1, the marginal mean for the
children is m2, and so forth. Let fv and Fv represent the
probability density function (PDF) and cumulative dis-
tribution function (CDF), respectively, of the age-at-on-
set pairs (X1, X2); let gg and Gg represent the PDF and
CDF, respectively, of the current-age pairs (C1, C2). The
subscript g is used here to indicate the parameters of the
current-age distribution. However, we leave the distri-
butional form of g (and G) completely unconstrained in
the likelihood. Accordingly, g is completely unspecified
as to both number and functional form of its constituent
parameters.

For a single APCP, the joint likelihood of v and g is
defined, up to an arbitrary multiplicative constant, by

f (x , x )g (c , c )v 1 2 g 1 2L(v, g) ∝ .
P (X X C , X X C )v, g 1 1 2 2

We follow the usual convention that uppercase letters
represent random variables and lowercase letters rep-
resent their values. Thus, the expression in the denom-
inator is independent of the observed current ages (c1,
c2). Note again that the form of g (or G) is left completely
unspecified, so that this is actually a semiparametric like-
lihood. We can write the PDF of the observed current-
age pairs as
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g (c , c )F (c , c )g 1 2 v 1 2∗g (c , c ) � .1 2 P (X X C , X X C )v, g 1 1 2 2

Thus, by multiplying the numerator and denominator
of by a common factor , we can rewriteL(v, g) F (c , c )v 1 2

the likelihood as

f (x , x ) g (c , c )F (c , c )v 1 2 g 1 2 v 1 2L(v, g) � #
F (c , c ) P (X X C , X X C )v 1 2 v, g 1 1 2 2

f (x , x )v 1 2 ∗� dG (c , c ) ,1 2F (c , c )v 1 2

where G* is the CDF corresponding to g* and where
is the mass that G* puts at (c1, c2). Because∗dG (c , c )1 2

G is completely nonparametric, so is G*. It is well known
that the (nonparametric) maximum-likelihood estimator
of G* is the empirical distribution function based on
observed current-age pairs, which does not involve v.
Thus the joint likelihood of v and g (the completely
unconstrained parameter set) is proportional, with re-
spect to v, to

f (x , x )v 1 2L (v) � .c F (c , c )v 1 2

This likelihood is simply (proportional to) the
conditional probability P (x , x FX X C , X X1 2 1 1 2

—that is, the conditional probability of theC , c , c F)2 1 2

observed ages at onset given the current ages (and given
that both parent and child are affected), which does not
involve the distribution of the current ages. Thus, when
the form of g (or G) is left completely unconstrained in

, the joint likelihood is proportional to the con-L(v, g)
ditional likelihood Lc(v), which conditions on the ob-
served current ages and does not involve the current-age
parameter g. In order to calculate the likelihood for a
full data set, Lc(v) is multiplied over all observed APCPs
in the usual way.

[The proof of equivalence between and Lc(v)L (v, g)
given here is the direct analog, in the continuous case,
of an argument given elsewhere by Hodge (1988), in the
discrete case (also see Kalbfleisch and Sprott 1970; Ew-
ens 1982; Hodge 1985; Vieland and Hodge 1995). In
this application, we consider the relevant pedigree struc-
ture to be the current-age structure of the observed
APCPs, and the relevant phenotypes are the ages at on-
set. Note that both this proof and the earlier one are
restricted to what has been called proband-independent,
or PI, sampling (Vieland and Hodge 1995).]

Given that Lc(v) is equivalent to , standard the-L(v, g)
ory shows that the maximum-likelihood estimator v̂

based on Lc(v) is consistent for v and has an asymptotic
normal distribution, and its variance-covariance matrix
can be estimated in the usual way, via the observed in-

formation. Let be the estimated standard error ofĵ

. It can be shown that the test statisticˆ ˆm � m Z �1 2 AO

is approximately distributed as a standardˆˆ ˆ(m � m )/j1 2

normal random variable in large samples (Wald 1943).
Therefore, a Z-test based on ZAO yields the correct type
I error rate, in marked contrast with the paired t-test
examined and criticized by Heiman et al. (1996). We
have confirmed through simulation studies, following
the procedures of Heiman et al. (1996), that this holds
even for quite small samples ( ) of randomly sam-n x 25
pled APCPs (results available on request; also see Huang
and Vieland 1997).

3. Ascertainment Bias and the Type I Error Rate of
Our AOA Test

The previous section established the asymptotic dis-
tribution of the test statistic ZAO, for random samples
of APCPs. In this section, we show that sampling APCPs
from families obtained for linkage studies, as is often
done, will tend to inflate the type I error rate of our
AOA test. Specifically, we (i) define explicitly what is
meant by a random sample of APCPs; (ii) we show that
random sampling of APCPs corresponds to an ascer-
tainment scheme defined elsewhere (Hodge and Vieland
1996) as generalized single ascertainment; and (iii) we
then show that preferential selection of pedigrees for the
presence of multiple affected individuals, as is common
in linkage studies, or what we shall call “multiplex as-
certainment,” does not correspond to generalized single
ascertainment. Finally (iv), we show that multiplex as-
certainment will tend to inflate the type I error rate of
an AOA test based on APCPs. We illustrate each step
with a simple, discrete example (sections 3.2, 3.4, and
3.5). (Note that the definition of multiplex ascertainment
used here differs somewhat from others in the literature;
e.g., see Morton 1959.)

3.1. Random Ascertainment of APCPs

We can picture random ascertainment of APCPs by
using the following contrivance: suppose that we are
sampling from a universe consisting entirely of parent-
child pairs (without additional relatives). Some of these
pairs will have neither parent nor child affected, some
will have one but not the other affected, and some will
have both affected. If we take a random sample from
the subspace consisting of all and only those pairs with
both parent and child affected, then we say we have a
random sample of APCPs (note that “random sampling”
is not being used to mean ascertainment independent of
phenotype). In other words, if this is the true ascertain-
ment scheme, then the appropriate likelihood is just
Lc(v), and the only “ascertainment correction” to the
distribution of is the factor(X , X ) 1/P (X X1 2 v 1
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Table 1

Sampling Probabilities for All Possible Configurations of c (Current-Age Pairs) and x
(Age-at-Onset Pairs) for APCPs, under Random Ascertainment and Generalized Single
Ascertainment

c x

RANDOM ASCERTAINMENT
GENERALIZED SINGLE

ASCERTAINMENT:
P(x, cFasc’d)P(x, c, asc’d) P(x, cFasc’d) P(xFasc’d, c)

c2, c1 x1, x1 1/32 1/15 1/3 4/60 � 1/15
c2, c1 x2, x1 2/32 2/15 2/3 8/60 � 2/15
c3, c2 x1, x1 1/32 1/15 1/12 4/60 � 1/15
c3, c2 x2, x1 2/32 2/15 2/12 8/60 � 2/15
c3, c2 x3, x1 1/32 1/15 1/12 4/60 � 1/15
c3, c2 x1, x2 2/32 2/15 2/12 8/60 � 2/15
c3, c2 x2, x2 4/32 4/15 4/12 16/60 � 4/15
c3, c2 x3, x2 2/32 2/15 2/12 8/60 � 2/15

NOTE.—Under random ascertainment, P(asc’d) � P(an APCP is ascertained) ∝
. The fourth column is obtained by dividing the third column by 15/� � P(x, c) � 15/32x c

32; the fifth column is obtained by dividing each entry in the fourth column by P(c), which
is 3/15 if or 12/15 if . Under generalized single ascertainment,c � (c , c ) c � (c , c )2 1 3 2

P(asc’d) � P(pedigree is ascertained) ∝ no. of APCPs in the , where p3pedigree � 60p/12
is an arbitrary scaling constant and where each ascertained pedigree contributes exactly
one pair to the data set. See the text for computation of under generalizedP (x, c, X X C)
single ascertainment.

, which corrects for the right truncation ofc , X X c )1 2 2

the sample space due to observation of only those pairs
in which both ages at onset are prior to the observed
current ages. Thus, thinking in terms of this artificial
sampling frame is one particular way to envision a sam-
pling frame and ascertainment scheme such that, as the
sample size , ZAO will converge to its theoreticaln r �
limiting distribution. We note that this is exactly the
sampling frame modeled in our previous work (Huang
and Vieland 1997) and in the work by Heiman et al.
(1996).

3.2. Ascertainment Example Part I: Random
Ascertainment of APCPs

We begin by constructing a wholly artificial sampling
frame to serve as a point of reference in what follows.
Consider a universe of parent-child pairs, each of which
has one of two equally likely, but different, current-age
structures. Let the possible current ages in the population
be c3, c2, and c1, and let each parent-child pair be either
(c2, c1) or (c3, c2), where the first individual listed is al-
ways the parent. (Note that there is a change of notation
from the previous section. There, the subscripts “1” and
“2” denote parent and child, respectively; here, the first
individual listed within the pair is always the parent,
while the subscripts will index a specific age [current or
onset].) Let there be three possible ages at onset for an
individual: , , or , occurring withx � c x � c x � c1 1 2 2 3 3

probabilities , , and , respectively. (Note that every1 1 1
4 2 4

individual in the population will be affected on or before
age c3 with probability 1. This simplifies the tables that
follow.) Let the age at onset and the current age be in-

dependent for each individual, and let the ages at onset
be independent for the two individuals within each par-
ent-child pair.

Under these assumptions, it is easy to calculate the
probability of any given APCP. For example,

, et cetera. There are1 1 1 1P[(x , x ), (c , c )] � ( )( )( ) �1 1 2 1 4 4 2 32

eight possible APCP configurations. Table 1 shows all
possible observed pairs and their probability distribu-
tions, for randomly ascertained samples of APCPs. The
probabilities correspond to the com-P (x, c d X X C)
ponents of our likelihood , given above, while theL(v, g)
probabilities correspond to Lc(v).P (x d X X C, c)

Note that the (expected value of the) mean age at onset
in the parents is higher than the mean age at onset in
the children within the randomly ascertained, truncated
sample space shown in table 1. For example, let x �1

, , and . Then the mean difference be-10 x � 30 x � 502 3

tween the parents’ ages at onset and the childrens’ in
this example is 8 years, even though by design there is
no AOA in this hypothetical population. This illustrates
the cause of inflation in the type I error rate of the paired
t-test for APCP data, as pointed out by Heiman et al.
(1996). We return to this example in the next section.

3.3. Generalized Single Ascertainment

It is not immediately obvious how this particular way
of defining random sampling can be applied to sampling
in the context of human pedigrees, since people do not
come in discrete parent-child pairs but, rather, in arbi-
trarily large extended pedigrees, some of which may con-
tain multiple (nonindependent) APCPs. Often in prac-
tice, larger pedigrees are ascertained (e.g., for the
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purposes of linkage analysis), and then, for purposes of
AOA testing, a single APCP is selected at random from
within each ascertained pedigree. In this case, the defi-
nition of the appropriate subspace of the sampling frame
is defined by the joint probability of the pedigree being
ascertained and of the APCP being selected from the
ascertained pedigree, or P(pedigree is ascertained) #
P(pair is sampled pedigree is ascertained).d

We recall that single ascertainment, in the sense fa-
miliar to human geneticists, can be defined as any as-
certainment scheme such that P(pedigree is ascertained)
� P(asc’d) is strictly proportional to the number of af-
fected individuals the pedigree contains (Stene 1977).
Hodge and Vieland (1996) defined a new class of as-
certainment schemes, designated “generalized single as-
certainment,” which extend this definition to allow for
sampling through sets of individuals. For example, if
pedigrees are ascertained through APCPs in such a way
that P(pedigree is ascertained) is strictly proportional to
the number of APCPs in the pedigree, this would be
generalized single ascertainment through parent-child
pairs.

Hodge and Vieland (1996) showed, with application
to the present context, that, when pedigrees are ascer-
tained through APCPs under generalized single ascer-
tainment, the correct likelihood is proportional to

. Thus, the likelihood is the sameP (x d X X C, c) � L (v)c

under both generalized single ascertainment through
APCPs and random sampling as defined in the previous
section; or, in other words, generalized single ascertain-
ment through APCPs is mathematically equivalent to
random sampling of APCPs as defined above.

3.4. Ascertainment Example Part II: Generalized Single
Ascertainment

We continue with the previous example in all partic-
ulars except one: we now suppose that rather than com-
ing in parent-child pairs, all families in our universe con-
sist of three people, one of each current age c3, c2, and
c1 (grandparent-parent-grandchild triplets). Thus, each
triplet can contain 0, 1, or 2 APCPs. We calculate the
probability distribution of these triplets on the basis of
the same assumptions as used previously; that is, we
assume that the age-at-onset distribution is , , and1 1

4 2

, for x1, x2, and x3, respectively, and we assume inde-1
4

pendence of ages at onset for individuals within “ped-
igrees.” However, we now assume that a pedigree with
two APCPs is twice as likely to contribute a pair to the
sample as a pedigree with only one (generalized single
ascertainment).

We continue to assume that each ascertained pedigree
contributes exactly one APCP to the sample. Thus, for
any ascertained pedigree containing two APCPs, we as-
sume that one of the two is picked at random (with a

50/50 probability) for inclusion in the sample. We note
that this procedure for picking a single APCP to sample
from a pedigree containing more than one APCP cor-
responds to common practice (e.g., see McInnis et al.
1993).

For example, there are two possible pedigree config-
urations that can contribute a (c3, c2), (x1, x1) pair: one
in which the grandchild is unaffected, and one in which
the grandchild is affected, with age at onset x1. The
former occurs with probability 3/123; the latter with
probability 1/123. In the latter case, all three individuals
are affected, yielding two APCPs, and we assume that
this pedigree is twice as likely as the first to contribute
a pair to the sample. At the same time, which of the two
pairs it contributes is random. Thus, the resulting
probability of a (x1, x1), (c3, c2) pair is 33p/12 �

, where p is an arbitrary (small) scal-1 3 3( )2p/12 � 4p/122

ing constant.
The final column of table 1 shows the probability

distribution of APCPs under generalized single ascer-
tainment. It is readily confirmed that both the joint dis-
tribution and the conditional distribu-P (x, c d X X C)
tion are identical to those obtainedP (x d X X C, c)
under random sampling. This illustrates the equivalence
between random sampling from a universe of parent-
child pairs and generalized single ascertainment from a
universe of larger pedigrees.

We note again that, in the case of generalized single
ascertainment, as in the equivalent case of random as-
certainment, the (expected value of the) mean age at
onset in parents will be higher than the mean in children,
even in the absence of any true AOA.

(The proof of equivalence given above, in section 2,
pertained to PI sampling [Vieland and Hodge 1995]. By
contrast, the proof of equivalence given here pertains to
proband-dependent [PD] sampling [Vieland and Hodge
1995] but is restricted to the special case of [generalized]
single ascertainment. This argument is a direct appli-
cation of the proof given by Hodge and Vieland [1996].
Note also that Hodge and Vieland [1996] offer a broader
definition of generalized single ascertainment than the
one we have used here.)

3.5. Ascertainment Example Part III: Multiplex
Ascertainment

We now illustrate the bias away from the null hy-
pothesis, which occurs when APCPs are drawn (at ran-
dom) from families preferentially selected for the pres-
ence of multiple affected individuals (multiplex
ascertainment). We continue with the previous example
of three-person pedigrees, in which the true, underlying
current-age structure of each pedigree is (c3, c2, c1). We
make the same assumptions regarding the age-at-onset
distribution as in the previous example. However, we
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Table 2

Sampling Probabilities for All Possible Configurations of c (Current-
Age Pairs) and x (Age-at-Onset Pairs) for APCPs, under Multiplex
Ascertainment

c x

MULTIPLEX ASCERTAINMENT

P(x, cFasc’d) P(xFasc’d, c)

c2, c1 x1, x1 4/24 1/3
c2, c1 x2, x1 8/24 2/3
c3, c2 x1, x1 1/24 1/12
c3, c2 x2, x1 2/24 2/12
c3, c2 x3, x1 1/24 1/12
c3, c2 x1, x2 2/24 2/12
c3, c2 x2, x2 4/24 4/12
c3, c2 x3, x2 2/24 2/12

NOTE.— if and only if all three individuals within aP(asc’d) � 1
pedigree have age at onset prior to current age, that is, only if all three
are affected.

now consider an extreme ascertainment scheme in which
we (i) ascertain (all and) only pedigrees in which all three
individuals are affected and then (ii) randomly select one
APCP from each ascertained pedigree. Table 2 shows the
sampling proportions under this multiplex ascertain-
ment scheme.

It is readily apparent that the joint distribution
under multiplex ascertainment (table 2) isP (x, c d asc’d)

not the same as the joint distribution of x and c under
generalized single ascertainment (table 1). This illus-
trates that sampling of pairs from pedigrees that are
themselves preferentially ascertained for the presence of
multiple affected individuals is not equivalent to gen-
eralized single ascertainment or random ascertainment
of APCPs.

It is readily confirmed that the mean parent-child dif-
ference in age at onset, under the multiplex ascertain-
ment scheme (table 2), is inflated relative to the mean
difference under generalized single ascertainment (table
1). For example, when , , and ,x � 10 x � 30 x � 501 2 3

as before, the expected mean parent-child age-at-onset
difference based on table 2 is 10 years, whereas table 1
yielded a mean difference of 8 years (again, recall that,
by design, the true mean difference in the hypothetical
population is 0).

Note however that the probability distribution P (x d
, calculated conditionally on the observed cur-asc’d, c)

rent-age structure c, is identical in Tables 1 and 2. The
reason that the mean parent-child age-at-onset difference
is inflated under multiplex ascertainment is that multi-
plex ascertainment results in a downward bias in the
mean current ages of the observed parent-child pairs.
Selection of affected pairs tends to inflate the current-
age distribution in the sample relative to the population
current-age distribution, since older individuals are more
likely to be affected. But ascertainment of multiplex ped-
igrees produces as an artifact a lessening of this inflation
of the current-age distribution: pedigrees that happen to
have some younger affected individuals are more likely
to have multiple affected individuals, and the result is a
sample with a higher representation of younger affected
individuals. It is readily confirmed in our example that
when, for instance, , , and thec � 10 c � 30 c � 501 2 3

mean current ages of parents and children, under our
multiplex example, are 40 and 20, respectively, which
are identical to the “population” means; however, under
generalized single ascertainment (table 1), these means
are 46 and 26, respectively.

Since younger affected individuals represent greater
truncation of the age-at-onset distribution than older
individuals, any ascertainment scheme that deflates the
representation of older individuals, relative to the dis-
tribution expected under generalized single ascertain-
ment, will tend to inflate the mean parent-child age-at-
onset distribution beyond what is corrected for by Lc(v).

The resulting estimate of the mean parent-child differ-
ence in age at onset will be upwardly biased.

(This example represents PD sampling and an ascer-
tainment scheme that is not [generalized] single. In this
case, we have shown that the current-age distribution
carries information about the parameters of the age-at-
onset distribution, and conditioning on current ages in-
troduces asymptotic bias into estimates of those para-
meters. This is a special application of the general result
proved by Vieland and Hodge [1995]—namely, when
the observed pedigree structure depends on the ascer-
tainment event [PD sampling] and when ascertainment
is not [generalized] single, then conditioning on observed
pedigree structure will produce errors in genetic param-
eter estimates.)

3.6. Effects of Multiplex Ascertainment on the
Type I Error Rate of Our Test

We have confirmed, using simulations, that this bias
in estimation will indeed result in an inflation of the type
I error rate of our test (see Appendix B for details of the
simulation procedures). In brief, we simulated random
APCPs with one of two current-age structures and then
enriched our sample for the presence of “young” pairs,
in order to mimic the effects of multiplex ascertainment
on the current-age distribution. Table 3 shows results
for one generating model, with true mean age at onset

for both parents and children.m � 55
The first row of table 3 gives results under generalized

single ascertainment. We note that, as expected, the pro-
portion (4.2%) of young pairs in ascertained samples is
quite a bit smaller than the generating proportion (50%).
Accordingly, the average age ( ) in ascertainedc̄ � 72
samples is high relative to the generating current-age
distribution ( ). Also as expected, the observedc̄ � 60
mean ages at onset are only very slightly downwardly
biased in the parents, for whom there is relatively little
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Table 3

Simulation of Effects of Observed Current-Age Distribution on Type
I Error Rate a

Percentage
Young c̄ ,¯ ¯x x1 2 ¯ ¯x � x1 2 ˆ ˆm , m1 2 (SE)ˆ ˆm � m1 2 a

4.2 72 55, 50 5.2 55, 55 .0 (3.2) .056
10 71 54, 48 6.5 55, 55 .0 (3.4) .065
25 66 54, 45 8.7 55, 55 .0 (3.6) .069
50 60 52, 40 11.9 55, 55 .2 (4.1) .072
75 54 51, 36 15.2 55, 54 .4 (5.2) .077
100 48 50, 31 18.6 54, 50 3.6 (7.1) .149

NOTE.—1,000 replicates of APCPs per data set were gen-n � 40
erated with and , under the null hypothesis of no AOA,m � 55 j � 10
and a test based on ZAO was applied at the 5% significance level.
“Percentage Young” represents the proportion of young pairs in every
sample (fixed by design); and are the observed mean age at onset¯ ¯x x1 2

in parents and children, respectively; and are the estimated meanˆ ˆm m1 2

ages at onset; SE � standard error; and a is the observed type I error
rate of the test over the 1,000 replicates. The results for and haveˆx̄ m

been rounded to whole numbers.

right truncation of the age-at-onset distribution, but are
somewhat more biased in the children (sample averages
have been rounded to whole numbers). This results in
an observed parent-child difference in age at onset of
5.2 years, under generalized single ascertainment, when
in fact the true difference is 0. However, the corrected
mean ages at onset ( , ), obtained from maximizationˆ ˆm m1 2

of Lc(v), are unbiased. Furthermore, the type I error rate
is very close to the nominal 5%. (Any bias here is small-
sample bias and is not related to the ascertainment
scheme, per se. We have confirmed that the type I error
rate is exactly 5% for large samples, under generalized
single ascertainment [results not shown].) These results
confirm the theory presented above.

The anticipated effect inherent in multiplex ascertain-
ment schemes will be to inflate the proportion of young
pairs, relative to the 4.2% obtained under generalized
single ascertainment. The remaining rows of table 3
show the impact on the type I error rate of increasing
this proportion. We find that, as the preferential selection
of young pairs increases, the observed mean age-at-onset
difference between parents and children also increases,
as expected. Moreover, although the “corrected” mean
difference, based on maximization of our conditional
likelihood, , is less than the observed mean differ-L (v)c

ence, there nevertheless is residual bias, particularly in
the estimate of the child age-at-onset mean m2. As a re-
sult, the true type I error rate of the test does in fact
increase as the mean current age of the sample decreases.
However, in stark contrast to the ordinary paired t-test,
the test appears to be fairly robust. Even at the most
extreme level of distortion shown here, when all of the
pairs are young pairs, the type I error rate is only 15%.

This simulation is not intended to represent an ac-
curate model of the complexity of true current-age dis-

tributions in natural human populations. For this rea-
son, even though sampling 100% young pairs might
appear extreme, this model in no way represents the
maximum effect of ascertainment bias on the real type
I error rate of the test. (However, note that, when APCPs
are drawn from pedigrees preferentially selected for the
presence of affected individuals in multiple generations,
the resulting proportion of younger [vs. older] pairs may
well be 150%.) In the model shown here, the overall
mean observed current age remains well above thec̄
mean age at onset (55 years), until the two final rows
of table 3. Increasing the mean age at onset or decreasing
the true mean current age will produce higher type I
error rates in the second to sixth rows. Because the ef-
fects of ascertainment on the type I error rate are me-
diated by the impact on the observed current-age dis-
tribution, effects may be highly variable from
application to application, and, in some cases, error rates
may be substantially higher than those shown here. Note
also that attempting to remedy this effect by testing at
a more stringent significance level will reduce the power
to detect true AOA. As the next section suggests, this
may not be prudent.

4. A Realistic Model under the Alternative Hypothesis
and the Power of Any AOA Test

In order to assess the power of our AOA test, it is
necessary to specify an alternative hypothesis. However,
consideration of the underlying biology suggests that,
under the hypothesis that an ETNR is causing AOA, the
appropriate mathematical model is not a single bivariate
(normal) distribution, as it is under the null hypothesis
of no AOA. Rather, the appropriate model is a mixture
of bivariate normal distributions.

Suppose that there really is AOA and that the cause
is a microsatellite-repeat that tends to expand in length
during transmission from affected parent to child. We
may think of each parent as belonging to one of k classes
of repeat length, at the locus in question. (Here, k is
arbitrary and may represent one class for every possible
number of repeats in the sequence, or groupings of re-
peat lengths; e.g., all individuals with 20–30 repeat
lengths might be grouped together into a single class.
See below for further comments.) Associated with each
repeat-length class i is an age-at-onset distribution with
some mean and some variance , where the subscriptm ji1 i1

“1” reminds us that these are parameters of the marginal
parental distributions. Under the alternative hypothesis,
the greater the repeat length, the lower the associated
mean age at onset will be. Thus, one effect of anm i1

ETNR will be the tendency for the k parental means
to be spread out along the X1 plane, as a functionm i1

of repeat length. We call this the “interdistributional”
ETNR effect.
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Table 4

Simulation of Interdistributional ETNR Effects on Power to Detect
AOA, under a Mixture Model

MIXTURE MODEL

POWER

NONMIXTURE MODEL

Distribution
1

Distribution
2

m1 m2 Power m1 m2 m1 m2

35 30 .98 40 35 30 25 .32
45 40 .92 50 45 40 35 .30
40 35 .96 45 40 35 30 .34
40 35 .96 50 45 30 25 .06

NOTE.—1,000 replicates of randomly ascertained APCPs pern � 40
data set were generated under the alternative hypothesis of true AOA,
and a test based on ZAO was applied at the 5% significance level.
Mixture models are generated by mixing two bivariate normal dis-
tributions, with given marginal means m1 and m2 in equal proportions;
corresponding nonmixture models have the same overall mean parent-
child age-at-onset difference. All models shown are generated with
marginal SDs , and intradistributional correlation coefficientsj � 5

.r � 0

Then, under the hypothesis that there is a tendency
for deleteriously large repeat lengths to expand when
transmitted, associated with each class i is a bivariate
distribution describing the joint behavior of the ages at
onset for an APCP, in terms of and , the mean agem mi1 i2

at onset in children for the ith distribution, and any
relationship (correlation) within parent-child pairs. Note
that there may be a tendency for the difference in mean
parent-child ages at onset, within each of the k constit-
uent bivariate distributions, to change as a function of
repeat length; similarly, the marginal within-distribution
variances also may be affected by repeat length. We will
call these the “intradistributional” effects of repeat
length on AOA.

Because, in the usual applications of AOA test-
ing—that is, prior to cloning of the relevant ETNR—we
cannot observe repeat lengths directly, we cannot assign
individuals to particular repeat-length classes. When we
sample APCPs, therefore, we are actually sampling from
a mixture of, say, bivariate normal distributions (one for
each underlying parental repeat-length class i). Thus, the
overall probability density function of the age-at-onset
pair is a mixture distribution of the formX � (X , X )1 2

, where ai is thef (v) � a f (v ) � a f (v ) � ... � a f (v )x 1 1 1 2 2 2 k k k

unknown mixing proportion and where each constituent
density fi has its own parameter vector v �i

. Hence, there are parameters(m , m , j , j , r ) 6k � 1i1 i2 i1 i2 i

in the full model (one vector v for each of the k classes,
plus the mixing proportions ai, wherek � 1 a � 1 �k

of the remaining ai’s).sum
Truncation of the age-at-onset distributions greatly

complicates the picture. For example, suppose that the
sole effect of the ETNR on AOA is a tendency for the
mean age at onset in parents to decrease with increasing

repeat length, with the relationship between parents’
ages at onset and their children’s ages at onset constant
across the mixing distributions; that is, we suppose that
there are interdistributional effects of an ETNR but no
intradistributional effects. Then, in the absence of trun-
cation, the distribution of the parent-child difference in
age at onset, , is not in fact a mixtureD � X � X1 2

model, since each of the constituent distributions has,
by stipulation, the same mean parent-child difference D
and the same variance of this difference (we thank Scott
Zeger for bringing this point to our attention). In this
case, the larger the impact of repeat length on D, the
greater the power of any AOA test.

However, when the constituent distributions are dif-
ferentially right truncated for parents and their children,
this is no longer the case. Even in the absence of any
intradistributional effects, the resulting model is truly a
mixture distribution with respect to D, and the variance
of the estimate of D may escalate rapidly with increasing
effect size. The effects on the power of our test may be
devastating.

We illustrate these truncation effects on power under
a mixture model with a simple simulation. In brief, we
simulated random APCPs from mixtures of two bivar-
iate normal age-at-onset distributions, holding the in-
tradistributional effects constant but allowing the in-
tradistributional distance between the parentalm � m11 21

mean ages at onset in the two mixing distributions to
increase (then, by stipulation, increases at ex-m � m12 22

actly the same rate). For each mixture model, we also
simulated a “corresponding” single-distribution model,
as described below (see Appendix B, for details of the
simulation procedures).

Table 4 shows characteristic results for one particular
generating model. The first three rows show the relative
stability of the power, under these generating conditions,
across a range of generating mean ages at onset, under
both the single-distribution model and the mixture
model to which it corresponds. Within each row, by
design, the overall mean parent-child age-at-onset dif-
ference is the same under the mixture model and the
corresponding nonmixture (single-distribution) model,
and the intradistributional parent-child differences are
constant as well. Therefore, comparison of the power
under the nonmixture model to the power under the
corresponding mixture model gives the reduction in
power due to interdistributional distances. Under these
simulation conditions, when the interdistributional dif-
ference is 10 years, the power under the mixture model
is only 30%–35%, compared with the power under the
corresponding single-distribution model, which is
92%–98%, depending on the generating mean age at
onset. The final row of table 4 shows the impact of
increasing intradistributional distance: when the inter-
distributional distance between parents with one class
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of repeat length and parents with another class of repeat
length is increased to 20 years, the power plummets to
only 6%. Bearing in mind that we are modeling only
one source of increased variability under the bivariate
right-truncated mixture model (i.e., interdistributional
effects), we conclude that the power of these tests may
reasonably be supposed to be low in many applications.
Moreover, we would generally expect power to increase
with effect size; but, in this case, it is precisely as the
interdistributional effect size increases that the power
decreases.

This simulation is artificial in that it involves only two
particularly simple constituent distributions and only
one source of added variance under a mixture model.
However, it illustrates clearly that, when both the un-
derlying biological hypothesis and the right truncation
of the age-at-onset distributions are taken into consid-
eration, there is good reason to suppose that our power
to detect AOA may be low.

The underlying biological model involves several
sources of variability, including possible intradistribu-
tional effects on both means and variances, and it can
be shown that, in the presence of intradistributional ef-
fects, the variance of the overall parent-child difference
D also tends to increase as the intradistributional effect
size increases. Whether these additional effects would
cause further deflation of the power, or whether they
might to some extent offset the impact of interdistri-
butional effects on power, is not a question that can be
addressed, in a comprehensive manner, until the biolog-
ical effects of ETNRs on age-at-onset distributions are
better understood (see Discussion).

5. Interpretation of Statistically Significant AOA Tests

Thus far, we have presented an AOA test that is correct
under specified sampling conditions; have shown that
its real type I error rate will tend to be inflated in realistic
(linkage) samples; and have argued that, when the un-
derlying biological hypothesis—that is, that an ETNR
mechanism is responsible for any observed AOA—is
taken into consideration, there is good reason to believe
that the power of the test may be low. At this point, a
reasonable question might be, can we establish guide-
lines for investigators regarding the true type I and II
error rates of these tests, for realistic data? We believe
that the answer to this question is no. Given the nu-
merous complicating factors, such an enterprise would
need to rely on simulations, but we have established that
the behavior of the test statistic will depend critically on
the true underlying current-age structure of the popu-
lation, the true ascertainment scheme, and the true un-
derlying age-at-onset distribution(s). Because all three of
these conditions may be unknown and/or impossible to
model with any accuracy with respect to any given ap-

plication, general guidelines cannot be established.
Therefore, in real applications, the true underlying dis-
tribution of the test statistic will remain unknown.

In sections 3 and 4 above, we presented some simu-
lations of type I and type II error rates for our test. The
simulated models are overly simplistic but also probably
overly conservative in estimating the true inflation of
error rates in applications (see Discussion). However,
they do suggest that, in practice, for a nominal 5% test
and typical data-set sizes, both the true type I error rate
and the power might very well be in the 10%–20%
range.

When the type I error rate of a test exceeds its power,
the test is called “biased” (Stuart and Ord 1991, p. 839),
and bias in a test has a serious implication for interpre-
tation of statistical significance. Consider the posterior
probability of true AOA, given a statistically significant
test result. Define a � P (significant test resultd

type I error rate of the test,no AOA) � the (1 � b) �
power of the test,P (significant test resultd AOA) � the

and “prior” probability of AOA forl � P (AOA) � the
the disease being tested; then, a simple application of
Bayes’s theorem yields the following:

( )P AOA d significant test result

( )� [P significant testd AOA P(AOA)]/

( )[P significant testd AOA P(AOA)

( ) ( )� P significant testd no AOA P no AOA ]

� (1 � b)l/[(1 � b)l � a(1 � l)]

� 1/[1 � a(1 � l)/(1 � b)l] .

As this formula shows, a biased test, for which a 1

, has the unfortunate property that the posterior(1 � b)
probability of an effect, given a statistically significant
finding, is actually smaller than the prior probability, no
matter what the prior probability may be. In this situ-
ation, even after collecting data, performing the test, and
obtaining a statistically significant result, we apparently
are less warranted in drawing the conclusion that there
is an effect than we were prior to any data collection
whatsoever.

The two complicating issues we have exam-
ined—ascertainment and mixture models—lead us to
conclude that, in any given application, it is plausible to
suppose that we find ourselves in the unfortunate situ-
ation . In this case, testing for AOA for hu-a 1 (1 � b)
man data is futile, in that, regardless of the outcome of
the test, we will have learned nothing about the under-
lying biological phenomenon of interest.
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6. Discussion

We have shown that it is possible to design a test for
AOA based on APCPs that properly accounts for both
the right truncation of the age-at-onset distribution and
the age differences between parents and children. How-
ever, we have also found compelling evidence that, in
real applications, the type I error rate of this test will
tend to be inflated because of ascertainment bias, while
consideration of the underlying biological model sug-
gests that the power of any AOA test may be expected
to be quite low when the underlying mechanism is an
ETNR. Under these circumstances, achieving a statisti-
cally significant AOA test result does not necessarily
mean that the data support the hypothesis of an ETNR
mechanism for the disease in question.

Our consideration of the true type I error rate of the
test is conservative, insofar as we have not considered
complications arising from selection bias, such as those
enumerated in Penrose (1948). For example, the logistics
of recruiting families through clinics could, under some
circumstances, lead to (inadvertent) preferential selec-
tion of parents with later age at onset and children with
earlier age at onset. Insofar as selection biases of this
type are present in any actual data set, they will tend to
further inflate the type I error rate of any AOA test (e.g.,
see McInnis et al. 1993; Bassett and Husted 1997). In
assuming throughout that data are obtained without se-
lection biases of this sort, we have ignored a second
important cause of inflation in the type I error rate of
an AOA test based on APCPs, in real applications. Sim-
ilarly, we have not considered such additional compli-
cations as fertility bias or measurement error.

Our treatment of power is also conservative, insofar
as the power simulations considered only one source of
additional variability under a mixture model, compared
with a single bivariate distribution—that is, what we call
“interdistributional effect size.” However, as noted
above, it is plausible to suppose that ETNRs exert effects
not only on the mean ages at onset across distributions,
but also on the mean parent-child difference within re-
peat-length classes, on the variance of the age-at-onset
distribution within repeat-length classes, and on the de-
gree of correlation between parents and children within
classes. All of these effects further inflate the variance of
the mean parent-child age-at-onset difference and, ac-
cordingly, may tend to reduce the power of any AOA
test.

We note parenthetically that, although each constit-
uent bivariate distribution may have , it is readilyr � 0i

confirmed that the parent-child age-at-onset pairs will
be correlated in the resulting mixture distribution. Be-
cause it is almost certainly the case that repeat lengths
themselves are correlated within parent-child pairs, any
model that allows for sampling of pairs across repeat-

length classes will entail overall parent-child age-at-onset
correlations, under the alternative hypothesis. Thus, al-
though it is true that AOA may exist in the absence of
parent-child correlations in age at onset (Hodge and
Wickramaratne 1995), this fact may be irrelevant when
testing specifically for ETNR mechanisms. The extent of
this correlation also may influence the power of our
paired test, under certain circumstances.

Another way in which our mixture model represents
a conservative estimate of the loss of power under a
plausible biological model is that we have considered
only the case (two constituent distributions). Ask � 2
noted, the choice of k is arbitrary (in fact, the most
appropriate mathematical model might be a continuous
mixture model). However, the greater the number of
distributions involved in the mixture (up to the limiting
case of a continuous range of distributions), the greater
the variance of the parent-child age-at-onset difference
D, holding all other variables constant, because Var(D)
then will involve the sum (integral) of the individual
variances from each of the constituent distributions, as
well as terms involving the pairwise distances. Thus, the
greater the number of the constituent distributions con-
tributing to the overall mixture, the greater the number
of sources of variability, and we might expect, in general,
to see a corresponding reduction in power. (However, it
is also possible that, for example, ascertainment bias,
while inflating the type I error rate of the test, might
actually increase the power.) Again, we have not taken
into consideration additional factors that could lead to
loss of power, such as measurement error.

It might be argued that, although our test based on
ZAO may fare badly, perhaps other, better tests could be
developed. One way in which we might achieve greater
power to detect AOA would be to utilize more-infor-
mative data. Possibly, other configurations of affected-
relative sets would be more efficient. For example, using
trios consisting of a parent with an affected sib pair,
rather than a single offspring, might be a more efficient
strategy (with some allowance for correlation within sib
pairs incorporated into the likelihood). Certainly, a more
informative type of data would be complete pedigrees,
including unaffected relatives. The difficulty here is that
any AOA test based on full pedigrees would need to
incorporate both a genetic model (in order to assign
conditional genotypic probabilities to unaffected indi-
viduals) and appropriate techniques from survival anal-
ysis, in order to correctly handle censoring and trun-
cation of the age-at-onset distribution(s).

This represents a terrifically complicated undertaking.
Among other difficulties, if it is necessary (as surely it
would be for a complex disorder) to simultaneously es-
timate parameters of the genetic model along with par-
ameters of the age-at-onset distribution, then it will
probably prove necessary to handle ascertainment in a
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reasonably robust way. Use of families collected for pur-
poses of linkage analysis would probably not lead to
reliable results, because of the effects of unsystematic
ascertainment.

While power may remain a fundamental difficulty for
any AOA test, it might be possible to at least work out
a better ascertainment correction, in order to curb the
inflation of the type I error rate that we have found.
However, it is worth noting in this context that one
immediate consequence of ascertainment under any
scheme other than generalized single ascertainment
would be that and Lc(v) would no longer beL(v, g)
equivalent, and exact correction for ascertainment
would involve parametric modeling of the current-age
distribution (Vieland and Hodge 1995). This, taken to-
gether with the unsystematic nature of most ascertain-
ment schemes for linkage studies, means that exact as-
certainment corrections are, for all practical purposes,
impossible.

It is possible of course that robust approximate as-
certainment corrections could be developed for APCPs
taken from linkage pedigrees. One such approximation
is to simply use Lc(v), that is, to correct as if ascertain-
ment were generalized single, even though it is not. On
the basis of our limited simulations, this approach did
indeed seem to work well if there was only moderate
deflation of the mean observed current age. While it may
be possible to improve somewhat on the performance
of this particular approach to approximating an ascer-
tainment correction, we are skeptical that much im-
provement in the type I error performance of the test
could be obtained by tinkering with this likelihood.

Another option would be to forego the use of linkage
samples and to obtain APCPs for AOA testing based on
true generalized single ascertainment. This would seem
to require either a complete enumeration of the sampling
frame (including diagnoses) beforehand or a willingness
to sample pairs of people at random, regardless of phe-
notype, retaining only those that, following clinical as-
sessment, are determined to be APCPs. Either procedure
could be prohibitively expensive, and, if the disease being
studied is even moderately rare, either scheme can fail
to yield adequate numbers of pairs, even for coverage
of relatively large catchment areas. This is, of course,
the reason that researchers prefer using linkage samples
as sources of APCPs: linkage samples offer the only
ready supply of substantial numbers of appropriate
pairs.

It should also be noted that generalized single ascer-
tainment is not the same as single ascertainment, through
affected individuals, combined with the additional re-
quirement that there be at least one APCP in the pedigree
(Morton 1959; Hodge and Vieland 1996). Thus, data
collected for purposes of segregation analysis, which
may be obtained under single ascertainment, are also,

strictly speaking, not appropriate for AOA testing based
on APCPs. However, it is possible that obtaining pairs
from such samples would produce less bias than drawing
pairs from linkage samples. In any event, the difficulty
of obtaining a critical mass of APCPs from such samples
would remain, unless the recurrence risks to parents/
offspring were quite high.

Finally, we return to the question of whether we could
gain an assessment of type I and type II error rates, over
a broad range of models, by performing more extensive
and realistic simulations. There are several reasons why
we feel that, for any particular case, it is not possible to
say what the appropriate simulation would be. Among
these are the following: when ascertainment is unsys-
tematic, there is no way to accurately simulate ascer-
tainment effects; the true age structure of the population
being studied generally is complex, unknown, and not
amenable to accurate simulation; behavior of the tests
depends on the true underlying age-at-onset distribu-
tion(s), which generally are unknown and may be com-
plicated to estimate accurately (Heimbuch et al. 1980);
and, under the alternative hypothesis, very little is
known about ETNR effects on age-at-onset distributions
for actual ETNR diseases, so that, at present, it is not
possible to confirm that any particular mixture model
is a realistic representation of a true ETNR effect on age
at onset (however, see Brinkman et al. 1997, for an ex-
ample of work on this issue).

It could be argued that these kinds of considerations
apply equally to all efforts to quantify behavior of test
statistics via simulations, but there are key features that
distinguish AOA tests from other tests of interest in hu-
man genetics. The behavior of the LOD score, for ex-
ample, can be highly dependent on pedigree structures
in small samples, but only on the observed pedigree
structures. Thus, we have the option of conducting sim-
ulations conditional on the observed pedigree structures
within any given sample, in order to obtain relevant
empirical distributions of the LOD score. However, the
behavior of ZAO depends crucially, even in large samples,
on the true, underlying pedigree structures (including
current ages) in the sampling frame, which we do not
know. (Strictly speaking, the LOD score under multiplex
ascertainment schemes also is dependent on the true,
underlying pedigree structure; this result follows the
same reasoning as above [Vieland and Hodge 1996], but
in contrast to AOA tests, numerical effects on the dis-
tribution of the LOD scores appear to be negligible [Sla-
ger and Vieland 1997].) Similarly, although power es-
timates for LOD scores are always conditional on the
specifics of the generating models, at least we are able
to simulate models with sound biological underpinnings.
However, until more is learned about the true effects of
repeat lengths on age-at-onset distributions for true
ETNR diseases, it is not possible to specify an appro-
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priate mixture distribution for use in calculating power
for AOA tests. Therefore, although we cannot conclude
that the power of an AOA test in any given application
is smaller than its type I error rate, there does not appear
to be any reliable way to establish that it is not.

In conclusion, despite the fact that AOA testing based
on APCPs taken from linkage samples is a virtually cost-
free enterprise and that we have provided an AOA test
that does not appear to be subject to the extreme bias
in type I error rates shown by the ordinary paired t-test
and related procedures, we reluctantly have come to the
opinion that the results of any AOA test based on
APCPs, in human applications, may be largely uninter-

pretable. We would not be inclined to interpret a sta-
tistically significant test as providing evidence that an
expanding microsatellite-repeat mechanism underlies
the disease being studied.
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Appendix A

Computational Details

Let and be the partial derivatives of Fv with respect to m1 and m2, respectively. Some calculation shows that′ ′F F1 2

and satisfy the conditional likelihood equationsˆ ˆm m1 2

n n′ ′F (c , c ) F (c , c )1 1i 2i 2 1i 2i— 2m � x � �j � rj j , (A1)� �1 1 1 1 2[ ]F (c , c ) F (c , c )i�1 i�1v 1i 2i v 1i 2i

and

n n′ ′F (c , c ) F (c , c )2 1i 2i 1 1i 2i— 2m � x � �j � rj j . (A2)� �2 2 2 1 2[ ]F (c , c ) F (c , c )i�1 i�1v 1i 2i v 1i 2i

For unknown , , and r, three more estimating equations, in addition to equations (A1) and (A2), are needed2 2j j1 2

to compute the estimators. Take partial derivatives of with respect to , , and r, where is the2 2log [L (v)] j j L (v)cn 1 2 cn

conditional likelihood, and then set these partial derivatives to zero. Some algebra yields

�1 n 2 �1 �1 nn � (x � m ) � rj j n � (x � m )(x � m )i�1 1i 1 2 1 i�1 1i 1 2i 22j � , (A3)1 2 2(1 � r )(1 � 2j H )1 3

�1 n 2 �1 �1 nn � (x � m ) � rj j n � (x � m )(x � m )i�1 2i 2 1 2 i�1 1i 1 2i 22j � , (A4)2 2 2(1 � r )(1 � 2j H )2 4

and

�1 �1 �1 n 2j j n � (x � m )(x � m ) � (1 � r )H1 2 i�1 1i 1 2i 2 5
r � , (A5)2 22(1 � j H � j H ) � 11 3 2 4

where

n�1H � n [h (c , c )/F (c , c )] , j � 3, 4, 5 .�j i�1 j 1i 2i v 1i 2i
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Here h1, h2, and h3 are the partial derivatives of Fv(c1, c2), with respect to , and r, and (c1i, c2i), .2 2j , j i � 1,...,n1 2

are the ages at interview of the observed APCPs.
It is clear that there is no explicit expression for . However, can be computed iteratively2 2ˆ ˆˆ ˆ ˆˆ ˆv � (m , m , j , j , r) v1 2 1 2

via equations (A1)–(A5). Specifically, computation can proceed as follows: (i) Start from an initial guess for . Av̂

convenient choice is the sample means, sample variances, and sample correlation coefficient of the observed ages
at onset. (ii) Use equations (A1)–(A5) to obtain an updated value of the initial guess and repeat this process until
the desired convergence criterion is satisfied.

We now give expressions for equations (A1)–(A5) in terms of standard normal distributions, which are convenient
to compute. Let and be the density function and cumulative distribution function of the univariate standardf(7) F(7)
normal distribution, respectively. Let and be the density function and cumulative distribution functionf(7, 7) F(7, 7)
of the bivariate standard normal distribution, respectively. Define

c � m c � m1 1 1i 1k � , k � ,1 1i
j j1 1

c � m c � m2 2 2i 2k � , k � ,2 2i
j j2 2

2�n [ ]( )f(k )F k � rk / 1 � r1i 2i 1i1
m � ,�1 n F(k , k )i�1 1i 2i

2�n [ ]( )f(k )F k � rk / 1 � r2i 1i 2i1
m � ,�2 n F(k , k )i�1 1i 2i

2�n [ ]( )k f(k )F k � rk / 1 � r1i 1i 2i 1i1
m � ,�3 n F(k , k )i�1 1i 2i

2�n [ ]( )k f(k )F k � rk / 1 � r2i 2i 1i 2i1
m � ,�4 n F(k , k )i�1 1i 2i

and

n1 f(k , k )1i 2im � .�5 n F(k , k )i�1 1i 2i

After some straightforward but tedious calculations, it can be verified that equations (A1)–(A5) can be written as

¯m � x � j (m � rm ) ,1 1 1 1 2

¯m � x � j (m � rm ) ,2 2 2 2 1

�1 n 2 �1 �1 nn � (x � m ) � rj j n � (x � m )(x � m )i�1 1i 1 2 1 i�1 1i 1 2i 22j � ,1 2(1 � r )(1 � m )3
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�1 n 2 �1 �1 nn � (x � m ) � rj j n � (x � m )(x � m )i�1 2i 2 1 2 i�1 1i 1 2i 22j � ,2 2(1 � r )(1 � m )4

and

�1 �1 �1 n 2j j n � (x � m )(x � m ) � (1 � r )m1 2 i�1 1i 1 2i 2 5
r � .

1 � m � m3 4

If it is assumed that , then the likelihood equations becomej � j � j1 2

¯m � x � j(m � rm ) , (A6)1 1 1 2

¯m � x � j(m � rm ) , (A7)2 2 2 1

n 2 n n 2� (x � m ) � 2r� (x � m )(x � m ) � � (x � m )i�1 1i 1 i�1 1i 1 2i 2 i�1 2i 22j � , (A8)2n(1 � r )(2 � m � m )3 4

and

�2 �1 n 2j n � (x � m )(x � m ) � (1 � r )mi�1 1i 1 2i 2 5
r � . (A9)

1 � m � m3 4

When the sample size is small, the correlation coefficient from the above updating scheme may not be in the
interval (�1, 1). In such a case, we can use a profile-likelihood approach, using a grid in (�1, 1), the range of r.
For each point in this grid, we maximize the likelihood with respect to ( ) using equations (A6)–(A8).L m , m , jcn 1 2

Let be the value at which the maximum of these likelihood values is attained. Then the maximum likelihoodr̂

estimate (MLE) of the correlation coefficient is and the MLE of ( ) is the corresponding ( ) that2 2ˆˆ ˆ ˆr m , m , j m , m , j1 2 1 2

maximizes L , with respect to ( ).2 2ˆ(r, m , m , j ) m , m , jcn 1 2 1 2

Appendix B

Simulation of Type I and Type II Error Rates

Type I Error Simulation Procedures

Random grandparent-parent-child current-age triplets (c1, c2, c3) were generated. Loosely following the procedures
described by Heiman et al. (1996), the grandparent’s current age, c1, was generated as a uniform U(80, 90) random
variable. Then, a random difference d1 was generated from a U(20–30) distribution, and the parent’s current age,
c2, was assigned as . The same procedure was repeated to obtain a random difference d2, and the child’sc � d1 1

current age, c3, was set to . Again, following Heiman et al., we generated ages at onset from a single bivariatec � d2 2

normal distribution, that is, under the null hypothesis of no AOA, with Thus, there were two types of pairsr � 0.
with respect to current ages: grandparent-parent, or “old,” pairs (c1, c2) and parent-child, or “young,” pairs (c2,
c3).

In order to generate generalized single ascertainment (true random sampling of APCPs) from this universe of
three-person pedigrees, a current-age pair was selected at random, with equal probability that it was an old or
young pair, and the pair was included in a data set if and only if both the parent’s and child’s ages at onset were
less than the corresponding current ages. Note that, under this scenario, even though 50% of the generated pairs
are young, the proportion of young pairs in the data is expected to be far less than 50%, since younger individuals
are less likely to be affected than older ones, with the extent of this effect dependent on the generating parameters
of the age-at-onset distribution.
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Then, in order to model the effects of oversampling young pairs (deflating the current age distribution), we used
a slightly different procedure. The same generating distributions were used, but for these models, the ascertainment
procedure was as follows: (i) an old or young pair of current ages was selected; (ii) a random pair of ages at onset
was generated for the current-age pair; and (iii) if both the parent and child ages at onset were less than the respective
current ages (i.e., both were affected), the pair was included in a data set; otherwise, a new pair of ages at onset
was generated for this same current-age pair. This last process was repeated until an APCP with the given current
ages was obtained, and the entire process was repeated until enough pairs were generated. Thus by fixing the
probability of an old versus young current-age pair at step (i), we were able to control the proportion of young
pairs in the ascertained data, while maintaining the level of truncation of the age-at-onset distribution appropriate
to the given observed current ages.

Power Simulation Procedures

We generated random parent-child current-age pairs (c1, c2) and assigned phenotypes (affected/unaffected) on the
basis of a mixture of two bivariate normal age-at-onset distributions, with mixing proportion . Data shown are1

2

for and for intradistributional correlation coefficients (however, see Discussion; this doesj � j � 5 r � r � 01 2 1 2

not mean that parent-child ages at onset are uncorrelated in the resulting data). A randomly generated pair was
included in a data set if and only if both the parent’s and child’s ages at onset were less than the corresponding
current age, that is, the data exhibit bivariate right truncation but are not subject to ascertainment bias. The two
constituent distributions were allowed to differ only in terms of the interdistributional distance m � m � m �11 21 12

. “Corresponding” single-distribution models were generated under a single age-at-onset distribution with them22

same overall mean parent-child age-at-onset difference and with marginal variances equal to those under each of
the mixing distributions (i.e., in the model shown, all marginal SDs were 5).

References

Bassett AS, Honer WG (1994) Evidence for anticipation in
schizophrenia. Am J Hum Genet 54:864–870

Bassett AS, Husted J (1997) Anticipation or ascertainment bias
in schizophrenia? Penrose’s familial mental illness sample.
Am J Hum Genet 60:630–637

Bonifati V, Fabrizio E, Vanacore N, Demari M, Meco G (1995)
Familial Parkinson disease: a clinical genetic analysis. Can
J Neurol Sci 22:272–279

Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden
MR (1997) The likelihood of being affected with
Huntington disease by a particular age, for a specific CAG
size. Am J Hum Genet 60:1202–1210

Ewens WJ (1982) Aspects of parameter estimation in ascer-
tainment sampling schemes. Am J Hum Genet 34:853–865

Heiman GA, Hodge SE, Wickramaratne P, Hsu H (1996) Age-
at-interview bias in anticipation studies: computer simula-
tions and an example with panic disorder. Am J Med Genet
(Neuropsychiatr Genet) 6:61–66

Heimbuch RC, Matthysse S, Kidd K (1980) Estimating age-
of-onset distributions for disorders with variable onset. Am
J Hum Genet 32:564–574

Hodge SE (1985) Family-size distribution and Ewens’ equiv-
alence theorem. Am J Hum Genet 37:166–177

——— (1988) Conditioning on subsets of the data: applica-
tions to ascertainment and other genetic problems. Am J
Hum Genet 43:364–373

Hodge SE, Vieland VJ (1996) The essence of single ascertain-
ment. Genetics 144:1215–1223

Hodge SE, Wickramaratne P (1995) Statistical pitfalls in de-
tecting age-of-onset anticipation: the role of correlation in

studying anticipation and detecting ascertainment bias. Psy-
chiatr Genet 5:43–47

Horwitz M, Goode EL, Jarvik GP (1996) Anticipation in fa-
milial leukemia. Am J Hum Genet 59:990–998

Huang J, Vieland VJ (1997) A new statistical test for age of
onset anticipation: application to bipolar disorder. In: Gol-
din LR, Bailey-Wilson JE, Borecki IB, Falk CT, Goldstein
AM, Suarez BK, MacCluer JW (eds) Genetic Analysis Work-
shop 10: detection of genes for complex traits. Genet Epi-
demiol 14:1091–1096

Kalbfleisch JD, Sprott DA (1970) Application of likelihood
methods to models involving large numbers of parameters.
J R Stat Soc 32:175–208

McInnis MG (1996) Anticipation: an old idea in new genes.
Am J Hum Genet 59:973–979

McInnis MG, McMahon FJ, Chase GA, Simpson SG, Ross
CA, DePaulo JR Jr (1993) Anticipation in bipolar affective
disorder. Am J Hum Genet 53:385–390

Morton NE (1959) Genetic tests under incomplete ascertain-
ment. Am J Hum Genet 11:1–16

Myers RH, Cupples LA, Schoenfeld M, D’Agostino RB, Terrin
NC, Goldmakher N, Wolf PA (1985) Maternal factors in
onset of Huntington disease. Am J Hum Genet 37:511–523

Paterson AD, Kennedy JL, Petronis A (1996) Evidence for
genetic anticipation in non-Mendelian diseases. Am J Hum
Genet 59:264–268

Penrose LS (1948) The problem of anticipation in pedigrees
of dystrophia myotonica. Ann Eugen 14:125–132

Slager SL, Vieland VJ (1997) Investigating the numerical effects
of ascertainment bias in linkage analysis: development of
methods and preliminary results. In: Goldin LR, Bailey-Wil-
son JE, Borecki IB, Falk CT, Goldstein AM, Suarez BK,



Vieland and Huang: Age-at-Onset Anticipation Tests 1227

MacCluer JW (eds) Genetic Analysis Workshop 10: detec-
tion of genes for complex traits. Genet Epidemiol 14:
1119–1124

Stene J (1977) Assumptions for different ascertainment models
in human genetics. Biometrics 33:523–527

Stuart A, Ord JK (1991) Kendall’s advanced theory of statis-
tics. Vol 2. Oxford University Press, New York

Vieland VJ, Hodge SE (1995) Inherent intractability of the
ascertainment problem for pedigree data: a general likeli-
hood framework. Am J Hum Genet 56:33–43

——— (1996) The problem of ascertainment for linkage anal-
ysis. Am J Hum Genet 58:1072–1084

Wald A (1943) Tests of statistical hypothesis concerning several
parameters when the number of observations is large. Trans
Am Math Soc 54:426–482

Zatz M, Marie SK, Passos-Bueno MR, Vainzof M, Campiotto
S, Cerqueira A, Wijmenga C, et al (1995) High proportion
of new mutations and possible anticipation in Brazilian fa-
cioscapulohumeral muscular dystrophy families. Am J Hum
Genet 56:99–105


	Statistical Evaluation of Age-at-Onset Anticipation: A New Test and Evaluation of Its Behavior in Realistic Applications
	Summary
	1. Introduction
	2. An Appropriate Statistical Test
	3. Ascertainment Bias and the Type I Error Rate of Our AOA Test
	3.1. Random Ascertainment of APCPs
	3.2. Ascertainment Example Part I: Random Ascertainment of APCPs
	3.3. Generalized Single Ascertainment
	3.4. Ascertainment Example Part II: Generalized Single Ascertainment
	3.5. Ascertainment Example Part III: Multiplex Ascertainment
	3.6. Effects of Multiplex Ascertainment on the Type I Error Rate of Our Test

	4. A Realistic Model under the Alternative Hypothesis and the Power of Any AOA Test
	5. Interpretation of Statistically Significant AOA Tests
	6. Discussion
	Acknowledgments
	References


